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Abstract: Radiographic image quality is one of the factors that impacts professionals’ decisions when diagnosing 

lung diseases using X-ray images. Hence, poor radiographic image quality could result in a misleading diagnosis 

affecting the person being investigated. This is true in human vision, as well as the computer vision. This study 
investigated the effects of different radiographic image quality attributes (i.e., contrast, Gaussian blur, Gaussian 

noise, and salt-and-pepper noise) on the performance of various Convolutional Neural Networks (CNNs) models. 
We use COVID-19 x-ray data as an initiative to the pandemic, apply different radiographic image quality 

attributes, and test the performance of CNN models in the effects of the attributes in the classification task. The 

results showed the following: (i) increasing levels of experimented noises (i.e., Gaussian and salt-and-pepper 
noise) rapidly decreases the performance of the models with no sign of resiliency; (ii) decreasing contrast appears 

to be beneficial at some particular level (e.g., contrast factor = 3); and (iii) increasing Gaussian blur decreases the 

performance of models but less rapidly than that of noises. As a conclusion, increasing noise like Gaussian and 
salt-and-pepper noise can be considered as a hindrance to the performance of CNNs while decreasing contrast 

and increasing Gaussian blur seemed to be beneficial especially if applied for data augmentation or enhancement 

techniques as the performance of the CNNs were observed to be more resilient against these two attributes than 
that of noises. 
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1. INTRODUCTION

Improving the quality of digital radiographs is one of the most common necessities 

in medical imaging. One of the most common techniques to improve the quality of a 

radiographic image that exists in the literature is noise reduction, which is similar to the 

one being done by Lee et al. (2020), where they evaluated the image quality of low-dose 

digital radiographic images obtained with a new spatial noise reduction algorithm. Other 

techniques like contrast enhancement exist as well, like the one done by Kushol et al. 

(2019), where we performed contrast enhancement using morphological operators, which 

could help visualize important bone segments and soft tissues more clearly. Digital 

radiographic image quality matters not only to the professionals doing the diagnosis but 

also to the algorithms used as a non-primary way of diagnosing patients, such as deep 

learning (DL) algorithms. In this study, the investigation on the effects of different 

radiographic image quality attributes (i.e., contrast, Gaussian blur, Gaussian noise, and 

salt-and-pepper noise) on the performance of different convolutional neural network 

(CNN) algorithms has been conducted. The result of this study will be insightful and useful 
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in creating new or improving current techniques to improve the quality of radiographic 

images, especially x-ray images for DL purposes. 

Patients with severe and critical cases of the virus often develop respiratory diseases 

such as pneumonia, and the need for medical imaging was necessary to determine the 

severity and the treatment needed for these respiratory diseases. The characteristics of such 

an infection can be observed by a radiologist and by Deep Learning (DL) methods that can 

perform deep analysis across radiographic images. This makes early-stage, and precise 

diagnoses prevent the disease’s severity (Hammoudi et al., 2020). Subjective evaluation 

focuses on the perception of quality from the perspective of professionals. Understanding 

the technology of DL helps researchers and medical practitioners understand the effects of 

radiographic image quality in computer vision and the value of objective evaluation 

(Dodge & Karam, 2016). DL uses raw data to automatically discover representations 

needed for detection and classification. DL models were actually not new in the field of 

medical imaging; machines that use Computed Tomography (CT) and other medical 

imaging techniques use Artificial Intelligence (AI) to ensure the quality of medical images 

produced by these imaging techniques and to enhance the produced alongside other clinical 

parameters, both Machine Learning (ML) and DL offer fast, automated, and effective 

strategies to detect and classify abnormalities and extract specific features (Basu et al., 

2020). ML algorithms where DL falls under have the potential for investment in medicine. 

From drug discovery to clinical decision-making, the success of ML in recent years can be 

utilized, especially as medical records are increasingly digitized (Ker et al., 2017). 

Deep neural networks have the ability to extract sophisticated structures in raw data 

and, at the same time, hidden features. The amount of data utilized in training the algorithm 

determines its ability to generalize by ensuring that the data is properly handled, which 

makes these technologies special and can help remote areas or areas where medical 

professionals are scarce to provide the needed health care (López-Cabrera et al., 2021). 

The availability of open sources for free access to digitized radiographs from El-Shafai & 

Abd El-Samie (2020), Kaggle repository, GitHub, Mendeley, and other open sources 

allows different researchers around the world to make use of these images to create, 

improve, and develop models that can help and protect society, especially during this 

pandemic. On the other hand, Basu et al. (2020), Jain et al. (2021) and Guissous (2019) 

are some of the studies that utilized open sources in studying and applying DL, specifically 

Convolutional Neural Network (CNN), in various applications in the medical field, such 

as the classification of COVID-19 through medical images, skin lesions, and other 

classification tasks. 

The spread of COVID-19 in December 2019 has caused challenges to the healthcare 

systems worldwide such as containing the virus and preventing the sudden increase in 

mortality rate.  The need for medical and healthcare means a risk for the frontliners in 

exposing themselves to COVID-19 patients.  The virus was devastating, causing millions 

of people at risk of falling into extreme poverty and necessitating medical attention.  This 

supports the fact that there was a necessity to strengthen COVID-19 testing to isolate and 

provide treatment for those infected, especially those with severe and critical cases of the 

virus. There were previous studies during the pandemic that focused on this concern by 

applying technology to some treatments or diagnoses to limit the interaction of the medical 

frontliners and patients. Since the data being used in this study are COVID-19 x-ray images 

(i.e., COVID and Non-COVID), the results of this study could be useful in improving the 

techniques proposed by recent researchers in literature, particularly in improving the 

quality and quantity of data being used to predict COVID-19 in radiographic images using 
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DL, especially CNN algorithms. Although the dataset used in this study is COVID-19 data, 

the method in this study could be applied as well when it comes to other lung diseases. 

This study deals with the lack of understanding in the effects of radiographic image 

quality attributes in the field of computer vision and deep learning, the challenges to get 

high quality medical image data for building CNN models and the improvement of 

healthcare with the use of deep learning. The study aims to investigate the effects of digital 

radiographic image quality on the performance of CNN models to predict COVID-19 

likelihood.  Specifically, the study aims to: a) analyze how radiographic image qualities 

(i.e., contrast, Gaussian blur, Gaussian noise, and salt-and-pepper noise) affect the 

performance of the CNN models in different performance metrics (i.e., F1 score, AUC, 

accuracy, precision, and recall); and b) compare the performances of different CNN 

models in predicting COVID-19. The CNN models to be compared are as follows: 

DenseNet121, DenseNet169, DenseNet201, Inception-ResNetV2, InceptionV3, 

ResNet101, ResNet101V2, ResNet152, ResNet152V2, ResNet50, ResNet50V2, VGG16, 

VGG19, and Xception. 

 

 

2. METHODOLOGY 

 

2.1 Convolutional Neural Networks (CNNs) 

The CNN model sees the input image as an array of matrices. The structure of a CNN 

model can be divided as follows: the base (i.e., feature learning) and the head (i.e., 

classification). The base of the CNN is responsible for feature extraction and has three 

important components, namely: (i) convolution layer, (ii) rectified learning unit (ReLU) 

activation function, and (iii) pooling layer.  

The convolution layer works in a way that it slides a matrix called “kernel” over an 

input image (or input matrix). The main purpose of sliding the kernel on every region of an 

input image is to filter out the entire input image, leaving only the important features such 

as edges. The output image (matrix) of the convolution layer is called the “convolved 

feature.”  

The ReLU activation function will then apply non-linearity in a way that deactivates 

pixels of an image that have a value less than or equal to zero, leaving only positive values 

in the matrix. The main purpose of applying ReLU is that it detects the features of images 

that are filtered by the convolution layer. After that, the output matrix (i.e., convolved 

feature) from the convolution layer and ReLU will then pass on to the pooling layer.  

The pooling layer works in a pretty similar way to the convolution layer. It also 

includes a small matrix that moves through different regions of an input image (i.e., matrix 

of convolved features) and selects the maximum (i.e., max pooling) or average (i.e., average 

pooling) value of pixels in each region. The main purpose of applying a pooling layer is to 

condense the output image (i.e., the matrix convolved), which is an output of the 

convolution layer and ReLU activation.  
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Figure 1. The basic architecture of convolutional neural networks CNN (Rajpal, 2020). 

 

 

We will discuss some of the general CNN architectures used in building the CNN models 

in the following subsections. 

 

2.1.1  Visual Geometry Group (VGG) architecture  

VGG is a CNN model that was introduced by Simonyan and Zisserman in 2014. This 

CNN model is one of the best models submitted to ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC-2014) (Russakovsky et al., 2015).  This model also 

surpassed the performance of the first deep CNN model, AlexNet, by using multiple 3 × 3 

kernel-sized filters on its convolution layers. The VGG architecture models were trained 

for several weeks using NVIDIA Titan Black GPUs. Figure 2 shows the standard VGG16 

architecture, one of the two most common variants of VGG. 

 

Figure 2. Visualizing VGG16 (Huang et al., 2017). 
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2.1.2  Inception architecture 

Inception is a CNN model that was introduced by Szegedy et al. in 2015. It focuses 

on consuming less computational power by modifying the previous Inception 

architectures. InceptionV3 also demonstrated that high-quality results could be reached 

with receptive field resolution as low as 79×79 which is helpful in systems for detecting 

relatively smaller objects (Szegedy et al., 2015). A variant of the Inception architecture 

called InceptionV3 can be visualized in Figure 3. 

 

2.1.3  DenseNet architecture 

DenseNet is a CNN model that was introduced by Russakovsky et al. in 2016. The 

advantage of using this model is that it prevents overfitting, leading to false, accurate 

results, and requires less computation to achieve competitive performance. The CNN 

models with DenseNet architecture work in a way that the convolved feature matrix that 

was the product of the convolution layer and ReLU activation function also serves as an 

input for all other convolution layers. Figure 4 shows the connectivity of the layers in a 

DenseNet architecture. 

 

 

Figure 3. Visualizing InceptionV3 (Mahdianpari et al., 2018). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Connectivity of the layers in DenseNet121 (Huang et al., 2017). 
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2.1.4  Residual Network (ResNet) architecture 

ResNet is a type of CNN architecture introduced by He et al. in 2016. This 

architecture first introduced the concept of skipping layers. This type of architecture 

ensures that the higher layers in the model perform as well as the lower layers and not 

worse. Figure 5 shows what the layers in ResNet50 look like a 50-layer variant of the 

ResNet architecture. 

 

2.1.5  Xception architecture 

Xception is a type of CNN architecture that involves depth-wise separable 

convolutions. This architecture was first introduced by Francois Chollet, who was also the 

founder of Keras (Chollet, 2017). In addition, Xception is an improved version of 

Inception. Figure 6 shows the connectivity of layers in the Xception architecture. 

 

 

 

Figure 5. Visualizing the ResNet50 (Sachan, 2017). 

 

Figure 6. Diagram of Xception architecture (Chollet, 2017). 
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2.2 Data collection and preparation 

We used the dataset of El-Shafai and El-Samie (2020) as a training set. The publishers 

of the dataset applied different augmentation techniques to generate about 17,099 x-ray and 

CT images combined. The dataset contains two main folders: one for the x-ray scans, which 

includes two separate subfolders of 5,500 non-COVID images and 4,044 COVID images. 

The other folder contains the CT images. It includes subfolders of 2,628 non-COVID 

images and 5,427 COVID images. In this study, we only used the x-ray scans, which have 

a total of 9,544 images, for training the transfer learning models. 

 

Meanwhile, we used the dataset from Kaggle, published by Amanullah Asraf in 2020, 

as the validation and test set. The said dataset was gathered from different sources. The 613 

x-ray images of COVID-19 cases were collected from the combined datasets of COVID-

19 Image Data Collection (Cohen et al., 2020), Actualmed COVID-19 Chest X-ray Dataset 

Initiative (Wang et al., 2020), The Cancer Imaging Archive (TCIA), and the Italian Society 

of Radiology (SIRM) (Cohen et al., 2020).  The publisher also used 912 already augmented 

x-ray images from the Augmented COVID-19 X-ray Images Dataset (Alqudah, 2020). In 

addition, the said dataset also contains 1,525 images of pneumonia cases and 1.525 x-ray 

images of normal cases which were collected from the Kaggle repository of a published 

article (Kermany et al., 2018) and the National Institutes of Health (NIH) dataset (Wang et 

al., 2017).  The authors of this paper only used the x-ray images of COVID-19 and normal 

cases.  After gathering the datasets from their respective sources, the images from each 

dataset were resized to 224×224 resolution using OpenCV (Bradski & Kaehler, 2000), 

which is required for pre-trained model inputs, and split into training, validation, and test 

sets as shown in Table 1. 

 

2.3 Radiographic image quality attributes 

The radiographic image quality of the images from the dataset was manipulated in 

ten levels of the following attributes: contrast, Gaussian blur, Gaussian noise, and salt-

and-pepper noise. The manipulation of contrast was based on the proposed method of 

Haeberli and Voorhies (1994) called the interpolation and extrapolation. Applying 

interpolation reduces the contrast while extrapolation increases it. The authors used a 

blending factor of 0 to 1 with a step of 0.1. A blending factor of 1 returns the original 

radiographic image quality and blending factors less than 1 reduce the contrast. Figure 7 

shows an illustration of decreasing and increasing contrast using the concept of 

interpolation and extrapolation. 

 

 

Table 1. Dataset split ratio and its percentage. 

Set COVID Non-COVID Total 

Train Set 4044 5500 9544 (75.78%) 

Valid Set 763 763 1526 (12.12%) 

Test Set 762 762 1524 (12.10%) 

Total 5569 (44.22%) 7025 (55.78%) 12594 (100%) 
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Figure 7.  Illustration of contrast interpolation and extrapolation, the values refer to the 

contrast factor which is a unitless value (Haeberli & Voorhies, 1994). 

 

The blurring of an image was done using Gaussian blur. It works in a way that it 

slides a matrix called a "kernel" (smaller than the matrix of the input image), applies 

weights to each value in the sliding kernel (the values close to the center of the matrix are 

given more weights than those far away) and computes the average of all pixel values in a 

kernel (Carpentries, 2021). The computed average value in the kernel will be used to 

replace the old pixel. We varied the standard variation of the Gaussian from 1 to 10 in 

steps of 1. The size of the kernel windows is set to 4 times the standard deviation. The 

Python library called OpenCV was used to implement Gaussian noise and Gaussian blur. 

The third attribute is the Gaussian Noise which has a probability density function equal to 

Gaussian distribution. This type of noise disturbs the gray values in digital images (Boyat 

& Joshi, 2015). It is also called "electronic noise" because it arises in amplifiers or 

detectors (Swain, 2018). The magnitude of Gaussian noise depends on and is proportional 

to the standard deviation 𝜎 of Gaussian distribution which can be expressed as 

 

   𝑝(𝑧)  =  
1

𝜎 √2𝜋
𝑒

−(𝑧−𝜇)2

2𝜎2     (1) 

 

where 𝑧  is the gray level, 𝜇  is the mean of average value of 𝑧  and 𝜎  is the standard 

deviation. We varied the standard deviation of the noise from 10 to 100 with steps of 10. 

Finally, the third radiographic image quality is the salt-and-pepper noise which uses the 

Probability Density Function (PDF) to randomly distribute the light and dark color pixels 

on a given image. The PDF of salt-and-pepper noise can be defined as 

 

𝑝(𝑧) = {
𝑝𝑎 for 𝑧 = 𝑎
𝑝𝑏 for 𝑧 = 𝑏
0 otherwise

     (2) 

 

where 𝑝𝑎, 𝑝𝑏  are the probability density functions (PDFs), 𝑝(𝑧) is the distribution of salt-

and-pepper noise in an image and 𝑎, 𝑏  are values between 0 and 𝑧.  We applied the 

mentioned attributes to radiographic images in ten levels which can be seen below in Figure 

8. 
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Figure 8. Illustration of different levels of contrast, Gaussian blur, Gaussian noise, and salt-

and-pepper noise on an x-ray image. 

 

 

2.4 Performance metrics 

 

Confusion matrix: A confusion matrix is a type of metric to visualize the quantity of 

samples that are correctly or wrongly classified or predicted by the model during 

prediction. Figure 9 shows an example of a confusion matrix where a predicted sample 

can be categorized as True Positive (TP), False Negative (FN), False Positive (FP), and/or 

True Negative (TN). The y-axis refers to the actual samples, while the x-axis refers to the 

predicted samples. When it comes to medical images, the term “Positive” here refers to 

the samples (i.e., images) with an infected disease, while the term “Negative” refers to the 

samples without the disease. In this study, TP refers to the samples with confirmed COVID 

cases, which were also correctly predicted by the models to have COVID. FN refers to the 

samples with confirmed COVID cases but wrongly predicted by the models as Non-

COVID. FP refers to the Non-COVID samples but wrongly predicted by the models to 

have COVID. TN refers to the Non-COVID samples, which were also correctly predicted 

by the models as Non-COVID. 

 
 

Figure 9. Illustration of confusion matrix. 
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Precision and recall: When it comes to binary classification problem, precision refers 

to the number of true positives (TP) divided by the total number of positive predictions 

(i.e., TP + FP). Increasing precision reduces the number of FP. Meanwhile, recall refers to 

the number of TP divided by the total number of TP and FN. Maximizing the recall will 

minimize the FN. Here is the formula to calculate the precision and recall of the model 

respectively: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
,   𝑟𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

 

F1-score: The performance metric F1-score is the weighted average of precision and 

recall. It takes into account the FP and FN samples, which makes it useful when dealing 

with imbalanced datasets. The best score it can give is 1, indicating that the model correctly 

predicted all the respective labels of samples, while 0 is the worst, as it indicates that the 

model incorrectly predicted all the respective labels of samples. To calculate the F1-Score, 

one can use the following formula: 

 

𝐹1-𝑆𝑐𝑜𝑟𝑒 =  2 ×  (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)                       (4) 

 

Area under the curve of receiver operating characteristic (AUC-ROC):  The AUC-

ROC (or commonly called AUC) performance metric is one of the most common and 

important metrics for classification problems. To better understand the AUC, one must 

first understand how ROC works. An ROC curve is a curve of probability that determines 

if the model is able to separate the samples into positive and negative classes. The green 

and red curves below (Figure 10) are the distributions of TN and TP, respectively. The 

ideal scenario here is that the model can perfectly separate the classes (i.e., TN and TP). 

Meanwhile, the worst scenario is that the model was not able to distinguish the difference 

between classes. To plot the ROC (i.e., the colored orange curve in Figure 10), one must 

compute the True Positive Rate (TPR) and False Positive Rate (FPR) with many different 

thresholds. TPR is just another name to describe recall. Meanwhile, FPR can be computed 

using the ratio between FP and FP+TN. The area under the ROC curve is what the AUC-

ROC is all about. If the model was able to distinguish the difference between classes 

perfectly, it would give a value of 1, which is the highest value possible. The worst value 

it can give is 0.5, which means that the model was not able to distinguish the difference 

between classes. There are also cases where AUC becomes 0, which happens when the 

model wrongly classifieds the positive class as negative or vice versa. 

 

2.5  Software 

 

The Python library called PIL (Clark, 2021) was used to manipulate images at 

different levels of radiographic image quality attributes, specifically contrast and salt-and-

pepper noise. Meanwhile, another Python library called OpenCV (Bradski & Kaehler, 

2000) was used to apply different levels of Gaussian noise and Gaussian blur to the images. 

The library PIL is mainly used for image processing and manipulation in Python, and 

OpenCV, on the other hand, is used not only for image processing but also for other 

artificial intelligence applications in general. 
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Figure 10. Illustration of area under the curve (AUC). 

 

 

2.6  Schema of the experimental design 

 

Figure 11 shows the detailed schematic diagram of the methodology, from gathering 

the data to conducting the experiment. In summary, data was gathered from various 

sources; primarily Mendeley Data and Kaggle, with data gathered from Kaggle coming 

from various sources as well (refer to Section 2.2).  The data treatment is where the data 

has been resized in order to be compatible with the imported deep transfer learning models. 

Besides, this is also where the data has been split into three sets (i.e., the training set, the 

validation set, and the test set). After that, model training was conducted using the data 

from the training set and validation set. Meanwhile, different radiographic image quality 

manipulations were applied to the test set, namely applying contrast, Gaussian noise, 

Gaussian blur, and salt-and-pepper noise. This results in having different kinds of test sets, 

namely the test set with original radiographic image quality and with different levels of 

radiographic image qualities (i.e., with applied contrast, Gaussian noise, Gaussian blur, 

and salt-and-pepper noise, respectively). During test evaluation, the trained models have 

been tested against images with original and manipulated radiographic image qualities. 

With that, there are five types of results generated from the experiment, namely the results 

for original radiographic image quality and manipulated radiographic image quality (i.e., 

contrast, Gaussian noise, Gaussian blur, and salt-and-pepper noise). 
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Figure 11. Schema of the experiment design. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Performance of models on original radiographic image quality 

 

Figure 12 shows the performances of the models against the original radiographic 

image quality expressed in F1 score. This result is also the performance of the models 

when classifying COVID-19 in radiographic images. The family of transfer learning 

models with a DenseNet architecture outperformed other experimental models like 

Inception, ResNet, VGG, and Xception models in terms of F1 score. Specifically, 

Densenet201 recorded the highest performance with an F1 score of 0.969, followed by 

DenseNet121 and DenseNet169 with F1 scores of 0.9579 and 0.948, respectively. Note 

that the primary metric to determine the best performing model in this study is the F1 

score, as it takes into account both false positives and false negatives. Other performance 

metrics were used as well to relate the performances of the models with the results of other 

studies, like the use of AUC, accuracy, recall, and precision.  
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Figure 12. Performance of the models against the original image quality. 

In Figure 12, accuracy and AUC were unified as they have almost the same values 

for all the models. As shown in Figure 12, DenseNet also achieved the highest 

performance in terms of other metrics, with an AUC = 0.9685, accuracy = 0.9685, 

precision = 0.946, and recall = 0.993. Table 2 shows a more comprehensive result about 

the performance of each CNN model against the original radiographic image quality. 

 

3.2 Effects of decreasing contrast 

 

In the field of medical imaging, most of the time, contrast plays a role in improving 

radiographic or CT images. This is to improve the visibility of some organs and make them 

easier to detangle for a better diagnosis. Figure 13 shows the effects of the contrast on the 

performance of DL models in terms of F1-score, AUC, precision, and recall.  While the 

performance of the models slowly decreases through the decrease of the contrast factor, 

there is a slight increase which later on decreases rapidly.  The effect of decreasing contrast 

in model performance indicates the models’ capability to decrease the number of false 

positive and false negative samples. Meanwhile, the result in AUC shows the models’ 

capability to separate the positive from negative classes (i.e., COVID and Non-COVID). 

Decreasing the contrast factor contrast also decreases the AUC of the model. Meanwhile, 

precision can be defined as the quality of the positive prediction made by the model. The 

higher the precision is, the higher the quality of the detected COVID-19. 
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Table 2.  Performance of the models against the original radiographic image quality 

expressed in different metrics (F1 score, AUC, accuracy, precision, and recall). 

Model F1 
Score 

AUC Accuracy Precision Recall 

DenseNet121 0.957 0.956 0.956 0.931 0.985 

DenseNet169 0.948 0.945 0.945 0.902 0.998 

DenseNet201 0.969 0.968 0.968 0.946 0.993 

InceptionResNetV2 0.930 0.927 0.927 0.893 0.969 

InceptionV3 0.892 0.886 0.886 0.846 0.944 

ResNet101 0.906 0.931 0.931 0.886 0.990 

ResNet101V2 0.906 0.898 0.898 0.842 0.981 

ResNet152 0.927 0.922 0.922 0.875 0.985 

ResNet152V2 0.943 0.942 0.942 0.919 0.969 

ResNet50 0.918 0.911 0.911 0.852 0.994 

ResNet50V2 0.927 0.923 0.923 0.879 0.980 

VGG16 0.929 0.925 0.925 0.876 0.989 

VGG19 0.905 0.896 0.896 0.838 0.982 

Xception 0.909 0.902 0.902 0.854 0.971 

 

 

3.3  Effect of increasing Gaussian blur 

 

In the field of medical imaging, Gaussian blur is commonly used in many noise 

reduction methods, which play a role in improving the readability of a radiographic image. 

The variable used to manipulate Gaussian blur is the standard deviation (i.e., sigma). 

Gaussian blur decreases the performance of the models in all metrics more rapidly than 

that of contrast. The effect of Gaussian blur in F1-score shows a more congregated trend 

in the first half than any other metric.  This concludes that Gaussian blur could affect the 

performance of the models when they are slightly close to one another, while the second 

half of the plot (Figure 14a) shows a sparser trend in model performance in F1-score. The 

trends in the performance of the models in terms of F1-score indicate the capability of the 

models to minimize the quantity of false positive and false negative samples. Meanwhile, 

the trends in model performance in AUC and precision are slightly identical, and they both 

decrease more rapidly with increasing Gaussian blur. The plots of models’ performance in 

AUC and precision shown in Figures 14b and 14c indicate the models’ capability to 

separate the positive from negative classes (i.e., COVID and Non-COVID) and the quality 

of the positive predictions by the models, respectively. 
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Figure 13. Effects of contrast on the performance of CNN models measured using (a) F1 

score, (b) AUC, (c) Precision, and (d) Recall by manipulating the values of 

contrast factor in the image dataset. 

 

     Finally, the plot on recall (figure 14d) shows a mix of trends between models. Some 

models show a rapid increase in recall, some of which converge to 1.00, while others 

decrease rapidly as the gaussian blur increases. The plot of models’ performance in recall 

indicates the models’ ability to make positive predictions under the increasing levels of 

gaussian blur. In medical imaging, applying gaussian blur or blur, in general, is commonly 

used in medical image enhancement as a noise reduction method. Compared to models’ 

performance against decreasing contrast (refer to section 3.2), experiment models are more 

susceptible to gaussian blur. Also, the performance of dl models against the decreasing 

gaussian blur is different from the result of dodge and karam (2016) where the 

performance of dl models shows no sign of an increase in performance. Note that all of 

the stated results in this study about the effects of gaussian blur could be biased in favor 

of deep learning algorithms, and the result might be different if other applications are 

involved. 
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Figure 14. Effects of Gaussian blur on the performance of CNN models measured using 

(a) F1 score, (b) AUC, (c) Precision, and (d) Recall by manipulating the values 

of sigma in the image dataset. 

 

3.4    Effects of Gaussian noise 

Gaussian noise is a type of noise that commonly occurs during medical image 

acquisition. Specifically, it occurs due to camera or device inefficiency being used to 

capture a medical image. Gaussian noise has never been helpful when diagnosing, 

and so, most of the time, the existing studies in literature focus on removing not only 

Gaussian noise but noise in general. The results present the effect of Gaussian noise 

on the performance of different DL models expressed in a different matrix. It is 

visible that, for all metrics, Gaussian noise rapidly reduced the performance of the 

DL models.  
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Figure 15. Effects of Gaussian noise on the performance of CNN models measured using 

(a) F1 score, (b) AUC, (c) Precision, and (d) Recall by manipulating the values 

of variance in the image dataset. 

 

 In terms of F1-score, the performance of DL models converged at 0.65 – 0.66.  

However, there is still a trend that differs from the others, like the trend on the performance 

of the model VGG19, which continuously decreases even in other metrics. The trend in 

F1-score indicates the capability of the DL models to reduce false positive and false 

negative predictions. In terms of AUC and Precision, the performance of DL models 

converged in 0.5 after variance = 2, which means the models were already giving random 

predictions at this point.  Finally, the performance of DL models in terms of recall shows 

a sudden increase in trend. Recall converges up to 1.0 when increasing the Gaussian noise. 

That is, increasing Gaussian noise increases the ability of the model to predict the positive 

class (i.e., COVID), which is the same when reducing contrast. These results are somewhat 

different from the results of Dodge and Karam (2016) where they also evaluated the effects 

of Gaussian noise in non-medical images. In their study, although the performance of the 

DL models is decreasing, the trends are not decreasing rapidly, which is different from the 

results found in this study (Figure 15). 

 

3.5  Effects of salt-and-pepper noise 

Salt-and-pepper noise generally occurs when there is an error during analog-to-

digital conversion. It can be visualized as random black and white pixels in an image 

containing the noise. This type of noise, like Gaussian noise, has never been useful 

in radiographic image diagnosis. In terms of F1-score, the performance of DL models 

against increasing salt-and-pepper noise rapidly decreased and converged to 

approximately 0.66, which is almost the same as Gaussian noise.  
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Figure 16. Effects of salt-and-pepper noise on the performance of CNN models measured 

using (a) F1 score, (b) AUC, (c) Precision, and (d) Recall by manipulating the 

values of probability in the image dataset. 

 

The trends in Figure 16a indicate the capability of the models to reduce false positive 

and false negative predictions. Meanwhile, in terms of AUC and precision, the 

performance of the models also rapidly decreased and converged to 0.5, which is also the 

same as in Gaussian noise. The AUC and precision of 0.5 only demonstrate that the models 

are already making random predictions. On the other hand, recall quickly increases for the 

majority of the models. This indicates that the capability of the models to predict the 

positive class (i.e., COVID) increases as the salt-and-pepper noise also increases. 

 

 

 

4. CONCLUSIONS 

 

Investigation of the effects of digital radiographic image quality on the performance 

of DL models can lead to other research milestones, especially in improving the 

performance of DL models in the future. This is because the outcomes of such an 

investigation could be useful in improving the quality of data being used to train DL 

models. Through the use of insightful results from this study, techniques such as data 

augmentation and medical image quality enhancement could be implemented more 

efficiently. Since the dataset used in this study focuses on identifying COVID-19 cases, 
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this study is also useful when improving current DL models for COVID-19 detection 

existing in the literature, specifically by improving the quality and quantity of data. While 

the data being used is focused on COVID-19 detection, the results of this study could be 

useful and applied as well when dealing with other digital radiographic images. In this 

study, different levels of digital radiographic image qualities such as contrast, Gaussian 

blur, Gaussian noise, and salt-and-pepper noise were found to have a significant effect on 

the performance of experimented DL models. The DL models were found to be resilient 

at decreasing levels of contrast. In fact, the models’ performance was also found to be 

improving at some point before it finally declined at approximately contrast factor = 0.3. 

Also, DL models are less resilient to increasing Gaussian blur compared to contrast. All 

of the models have shown no resiliency to increasing noise (i.e., Gaussian noise and salt-

and-pepper noise). Another insight worth noting is that the recall of the DL models was 

significantly increased during the manipulation of the said attributes, causing the models 

to be biased in favor of samples with COVID cases. The insights from the results of this 

study could be used as a basis to improve the current performance of several DL models, 

particularly CNN, by improving the quality and quantity of data, which is more of a data-

centric approach than a model-centric one.  
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