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Abstract: This article provides an alternative proof for the Frullani integral formula using an approach 
different from the existing one. This alternative proof gave us a novel method for evaluating certain improper 

integrals of Frullani type. Moreover, the alternative proof also obtained an exciting result relating the Frullani 

integral to a specific class of improper double integrals—the alternative proof started by stating and proving 
lemmas used as stepping stones to obtain the main proof. An essential condition was also imposed to obtain 

the desired result.  
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1. INTRODUCTION

The main type of integral under consideration of this paper was first conceptualized 

by an Italian Mathematician Giuliano Frullani (1795–1834) from whence the name 

“Frullani integral”. This integral is expressed in the form: 

∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥 = ln (

𝑎

𝑏
) [𝑓(∞) − 𝑓(0)]

∞

0
, (1.1) 

where 𝑎, 𝑏 > 0, 𝑓 is a continuously differentiable function on [0, ∞), 𝑓(∞) = lim
𝑥→∞

𝑓(𝑥) 

and 𝑓(0) = lim
𝑥→0+

𝑓(𝑥) (Bravo et al., 2017). 

In 1828, Frullani published this result but apparently with an inadequate proof. 
Augustin-Louis Cauchy gave a satisfactory proof under certain conditions of 𝑓(𝑥). Also, 
according to Ostrowski (1949), Cauchy’s result has been fully generalized, replacing the 
limits 𝑓(0) and 𝑓(∞) by suitable mean values. The proof of Cauchy is used in most 
textbooks today. Arias-De-Reyna (1990) gives the fullest account of the history of the 
discovery of the solution of this integral, which was first given by Frullani in 1821, and 
later by Cauchy in 1823 and 1827. Iyengar (1940) gives the first modern analysis, 
followed by Ostrowski (1949), Agnew (1942, 1951), Ostrowski (1976) and Arias-De-
Reyna (1990). 

More recently, the Frullani integral appeared in the proof for a theorem by Allouche 
(2007), which claims that the value of Ramanujan integral I can be deduced from 
Ramanujan integral J, where 

𝐼 = ∫
𝑥𝑝−1

1 − 𝑥

1

0

−
𝑟𝑥𝑞−1

1 − 𝑥𝑟
𝑑𝑥 
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and 

𝐽 = ∫
(1 + 𝑎𝑥)−𝑝 − (1 + 𝑏𝑥)−𝑝

𝑥

∞

0

𝑑𝑥. 

 

In another paper (Trainin, 2010), a generalized form of Frullani’s theorem was applied 
in evaluating improper integrals of the form 

 

𝐼(𝑛. 𝑚) = ∫
𝑠𝑖𝑛𝑛𝑥

𝑥𝑚

∞

0

𝑑𝑥. 

 

In this paper, we shall present and prove that if a function 𝑓 is of exponential order 

and ∫ 𝑓′(𝑥)
∞

0
𝑑𝑥 is convergent then Eq. (1.1) holds. An unexpected by-product is that the 

process of proving the formula provided us alternative methods for evaluating Frullani 
integrals and certain class of improper double integrals. 

 

 

 

2. METHODOLOGY 

 

The method adopted in this paper was mainly expository. Definitions and theorems 

used can be found in Ferrar (1958), Taylor & Mann (1955), and Wrede & Spiegel 

(2010). Lemmas were proven first before proving the main theorem. The techniques that 

were used to prove the lemmas involve transformations, triangle inequality, and 

theorems on convergence. Proving the main theorem requires the use of theorems on 

convergence, integration by parts technique, and the fundamental theorem of calculus.  

 

 

3. RESULTS AND DISCUSSSION 

 
3.1  Definitions and introductory lemmas 

  

The succeeding discussion on some definitions and results was lifted from Wrede 
and Spiegel (2010).  

The function 𝑓  is said to be of exponential order 𝛾  if there exist constants 
𝛾𝜖 ℝ, 𝑀 > 0, 𝑡0 > 0 such that |𝑓(𝑡)| ≤ 𝑀𝑒𝑐𝑡  for all 𝑡 > 𝑡0. Suppose the integral 

𝜙(𝛼) = ∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎

, 

converges for 𝛼1 ≤ 𝛼 ≤ 𝛼2  , or briefly [𝛼1, 𝛼2] , then it is said to be uniformly 
convergent in [𝛼1, 𝛼2] if for each 𝜖 > 0, we can find a number 𝑁 depending on 𝜖 but not 
on 𝛼, such that  

|𝜙(𝛼) − ∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎
| < 𝜖 for all 𝑥 > 𝑁 and all 𝛼 in [𝛼1, 𝛼2]. 
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A special test for uniform convergence called the Weirstrass-Majorant test states 
that if we can find a function  𝑀(𝑥) ≥ 0 such that: (a) |𝑓(𝑥, 𝛼)| ≤ 𝑀(𝑥) for 𝛼1 ≤ 𝛼 ≤

𝛼2 , 𝑥 > 𝛼  and (b) ∫ 𝑀(𝑥)𝑑𝑥
∞

𝑎
 converges, then ∫ 𝑓(𝑥, 𝛼)𝑑𝑥

∞

𝑎
 is uniformly and 

absolutely convergent in 𝛼1 ≤ 𝛼 ≤ 𝛼2 . A theorem on uniformly convergent integrals 

states that if 𝑓(𝑥, 𝛼) is continuous for 𝑥 ≥ 𝑎 and 𝛼1 ≤ 𝛼 ≤ 𝛼2, and if ∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎
 is 

uniformly convergent for 𝛼1 ≤ 𝛼 ≤ 𝛼2 , then 𝜙(𝛼) = ∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎
 is continuous in 

𝛼1 ≤ 𝛼 ≤ 𝛼2. Moreover, if 𝛼0 is any point of 𝛼1 ≤ 𝛼 ≤ 𝛼2, one can write  

lim
𝛼→𝛼0

∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎

= ∫ lim
𝛼→𝛼0

𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎

. 

 

Another theorem asserts that one can integrate 𝜙(𝛼) with respect to 𝛼 from 𝛼1 to 𝛼2 
to get  

 

∫ 𝜙(𝛼)𝑑𝛼
𝛼2

𝑎1

= ∫ {∫ 𝑓(𝑥, 𝛼)𝑑𝑥
∞

𝑎

} 𝑑𝛼
𝛼2

𝑎1

= ∫ {∫ 𝑓(𝑥, 𝛼)𝑑𝛼
𝛼2

𝑎1

} 𝑑𝑥
∞

𝑎

. 

 

These results show that for uniformly convergent integrals, one can interchange the 
limits and integration, and also the order of integration.  

Another result that will be used in the alternative proof for Frullani’s theorem is the 
Fubini’s theorem. This theorem provides a means to evaluate a double integral using an 
iterated integral in which the order of integration can be changed (Love, 1969; Aksoy & 
Martelli, 2002), provided that that the double integral yields a finite value.The Laplace 
transform of a continuous function will also play a role in the alternative proof. By 
definition, the Laplace transform of a continuous function 𝑓(𝑥)  defined for 𝑥 ≥ 0, 
denoted by ℒ{𝑓(𝑥)} , is a continuous function 𝐹(𝑠)  given by the improper integral 
(Schiff, 1999; Widder, 2015) 

 

ℒ{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

𝑎

= 𝐹(𝑠). 

The Laplace transform is an integral transform, which is next to the Fourier transform 
in its utility in solving physical problems encountered in science and engineering. 

 

The foregoing discussion justifies the following lemmas which are necessary for 
arriving at the alternative proof of Frullani’s theorem or in deriving the Frullani integral 
formula. 

 

Lemma 3.1.1 If the function 𝑓 is of exponential order, then there exist 𝛾1, 𝛾2 ∈ ℝ 
such that  
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𝑔(𝑠) = ∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0

 

converges absolutely and uniformly for all 𝑠 > max{𝛾1, 𝛾2}. 

 

Proof: Since 𝑓 is of exponential order, there exist constants 𝛾1, 𝛾2 ∈ ℝ and  𝑀1, 𝑀2 >
0   such that when the triangle inequality is applied, the following inequality holds: 

 

|𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)|𝑒−𝑠𝑥 ≤ 𝑀1𝑒−(𝑠−𝛾1)𝑥  + 𝑀2𝑒−(𝑠−𝛾2)𝑥 

 

for all 𝑥 > 0. By putting 𝑀 = max{𝑀1, 𝑀2} and 𝛾 = max{𝛾1, 𝛾2}, we see that for all 
𝑥 > 0 and 𝑠 > 𝛾, 

|𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)|𝑒−𝑠𝑥 ≤ 𝑀𝑒−(𝑠−𝛾)𝑥 ≤ 𝑀𝑒−𝑥.     (3.1) 
  

The integral of the right-hand function in (3.1) converges for all 𝑥 > 0. Thus by 
Weirstrass-Majorant Test, the integral in the lemma above converges absolutely and 
uniformly for all 𝑠 > 𝛾. Q.E.D 

 

Lemma 3.1.2 If the function 𝑓  is of exponential order, then 𝑔(𝑠)  is Riemann 
integrable on (𝛾, +∞) where 𝛾 is the constant obtained in the proof of lemma 3.1.1. 

 

Proof: Since 𝑔(𝑠) as an improper integral with parameter 𝑠 is uniformly convergent 
for all 𝑠 > 𝛾 (by lemma 3.1.1), then by interchanging the integrals we see that 

∫ 𝑔(𝑠)
∞

𝛾

𝑑𝑠 = ∫ ∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑠
∞

𝛾

∞

0

𝑑𝑥 

           =
1

𝛾
∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝛾𝑥∞

0
. 

𝑓  being of exponential order implies the right-hand integral above is convergent. 
Q.E.D 

 

Lemma 3.1.3 If 𝑓 is of exponential order, then 

 

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥
𝑒−𝛼𝑥𝑑𝑥 = ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠

∞

𝛼

∞

0

, 

 

where 𝑓(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
 is the Laplace transform of 𝑓(𝑥). 

 

Proof: Let 𝑤 = 𝑎𝑥, then 𝑑𝑤 = 𝑎𝑑𝑥 and   
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 ∫ 𝑓(𝑎𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
=

1

𝑎
∫ 𝑓(𝑤)𝑒−

𝑠

𝑎
𝑤𝑑𝑤

∞

0
=

1

𝑎
𝑓 (

𝑠

𝑎
).        (3.2) 

 

Similarly, 

 

                                  ∫ 𝑓(𝑏𝑥)𝑒−𝑠𝑥𝑑𝑥
∞

0
=

1

𝑏
𝑓 (

𝑠

𝑏
).         (3.3) 

 

Subtracting Eq. (3.3) from Eq. (3.2) we have, 

 

∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0

=
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
). 

 

Now, by Lemma 3.1.2, the improper integral ∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0
 is 

integrable on (𝛾, ∞) and 

 

∫ {∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0

} 𝑑𝑠 = ∫ [
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)]

∞

𝛼

𝑑𝑠
∞

𝛼

. 

 

Because the foregoing double integral yields a finite value when the integrand is 
replaced by its absolute value, then by Fubini’s theorem, one can switch the order of 
integration as follows: 

 

∫ {∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0

}
∞

𝛼

𝑑𝑠 = lim
𝑐→∞

∫ {∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑥
∞

0

} 𝑑𝑠
𝑐

𝛼

 

= lim
𝑐→∞

∫ {∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]𝑒−𝑠𝑥𝑑𝑠
𝑐

𝛼

} 𝑑𝑥
∞

0

 

= lim
𝑐→∞

∫ {[𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)] ∫ 𝑒−𝑠𝑥𝑑𝑠
𝑐

𝛼

} 𝑑𝑥
∞

0

 

= lim
𝑐→∞

∫ {∫ [𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)]
−𝑒−𝑠𝑥

𝑥
|
𝑐
 
𝛼

𝑐

𝛼

} 𝑑𝑥
∞

0

 

 = ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥

∞

0
𝑒−𝛼𝑥𝑑𝑥. 

 

Thus, 

 

∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥

∞

0
𝑒−𝛼𝑥𝑑𝑥 = ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)]

∞

𝛼
𝑑𝑠. Q.E.D 
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Lemma 3.1.4 If the function 𝑓 is of exponential order and 

 

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥
𝑑𝑥

∞

0

 

is convergent, then 

 

∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥

∞

0
= ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)]

∞

0
𝑑𝑠. 

 

Proof: From Lemma 3.1.3, we have  

 

∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥

∞

0
𝑒−𝛼𝑥𝑑𝑥 = ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)]

∞

𝛼
𝑑𝑠, 

where 𝛼 ∈ (0, ∞). 

 

As the proof of lemma 3.1.1, the improper integral ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥

∞

0
𝑒−𝛼𝑥𝑑𝑥  is 

uniformly convergent for all 𝛼 ∈ (0, ∞). Consequently, we can interchange the limit and 
the integral, that is, 

 

lim
𝛼→0+

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥

∞

0

𝑒−𝛼𝑥𝑑𝑥 =  ∫ lim
𝛼→0+

𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥
𝑒−𝛼𝑥𝑑𝑥

∞

0

 

                 = ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥

∞

0
.                  (3.4) 

Moreover, 

 

lim
𝛼→0+

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥

∞

0

𝑒−𝛼𝑥𝑑𝑥 = lim
𝛼→0+

∫ [
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠

∞

𝛼

 

              = ∫ [
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠

∞

0
.    (3.5) 

Comparing equations (3.4) and (3.5) we get 

 

∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥

∞

0
= ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠

∞

0
. 

 

3.2  Alternative proof of Frullani’s theorem 
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The alternative proof that we shall present requires the additional condition that 

∫ 𝑓′(𝑥)𝑑𝑥
∞

0
 is convergent in order for the solution of the Frullani integral to exist. 

 

Theorem 3.2.1 (Frullani integral) If 𝑓  is of exponential order and  ∫ 𝑓′(𝑥)𝑑𝑥
∞

0
 is 

convergent, then 

 

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥
𝑑𝑥 = ln (

𝑎

𝑏
) [𝑓(∞) − 𝑓(0)]

∞

0

, 

where 𝑓(∞) = lim
𝑥→∞

𝑓(𝑥) and 𝑓(0) = lim
𝑥→0+

𝑓(𝑥). 

 

Proof: By Lemma 3.1.4, we have 

 

∫
𝑓(𝑎𝑥) − 𝑓(𝑏𝑥)

𝑥
𝑑𝑥 = ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠,

∞

0

∞

0

 

 

where 𝑓(𝑠) is the Laplace Transform of 𝑓. Now by definition of Laplace transform, 
we have 

 

       [
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] = ∫ [

1

𝑎
𝑒−

𝑠

𝑎
𝑥 −

1

𝑏
𝑒−

𝑠

𝑏
𝑥] 𝑓(𝑥)𝑑𝑥

∞

0
. 

 

Integrating both sides of the equation above with respect to 𝑠, we have 

 

∫ [
1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)]

∞

0
𝑑𝑠 = ∫ {∫ [

1

𝑎
𝑒−

𝑠

𝑎
𝑥 −

1

𝑏
𝑒−

𝑠

𝑏
𝑥] 𝑓(𝑥)𝑑𝑥

∞

0
}

∞

0
𝑑𝑠. 

 

Now, by integration by parts, with 𝑢 = 𝑓(𝑥) and 𝑑𝑣 = [
1

𝑎
𝑒−

𝑠

𝑎
𝑥 −

1

𝑏
𝑒−

𝑠

𝑏
𝑥] 𝑑𝑥, we see 

that 

 

∫ [
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
]

∞

0
𝑑𝑥 = ∫ ∫

𝑒
−

𝑠
𝑎𝑥

−𝑒
−

𝑠
𝑏𝑥

𝑠

∞

0

∞

0
𝑓′(𝑥)𝑑𝑥𝑑𝑠. 

 

Since the conditions of Fubini’s theorem are satisfied, that is, the double integral gives 
a finite answer when the integrand is replaced by its absolute value, then the order of 
integration on the right side expression can be changed (Love, 1969; Aksoy & Martelli, 
2002) so that, 
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∫ [∫
𝑒−

𝑠
𝑎

𝑥 − 𝑒−
𝑠
𝑏

𝑥

𝑠

∞

0

𝑓′(𝑥)𝑑𝑥] 𝑑𝑠 =
∞

0

∫ [∫
𝑒−

𝑠
𝑎

𝑥 − 𝑒−
𝑠
𝑏

𝑥

𝑠

∞

0

𝑓′(𝑥)𝑑𝑠] 𝑑𝑥
∞

0

 

= ∫ 𝑓′(𝑥) [∫
𝑒−

𝑠
𝑎

𝑥 − 𝑒−
𝑠
𝑏

𝑥

𝑠

∞

0

𝑑𝑠] 𝑑𝑥
∞

0

 

             = ∫ 𝑓′(𝑥) ln (
𝑎

𝑏
) 𝑑𝑥

∞

0
. 

 

Thus, 

∫ [
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
]

∞

0
𝑑𝑥 = ∫ 𝑓′(𝑥) ln (

𝑎

𝑏
) 𝑑𝑥

∞

0
= ln

𝑎

𝑏
∫ 𝑓′(𝑥)𝑑𝑥

∞

0
. 

                                                                                          = ln
𝑎

𝑏
(𝑓(∞) − 𝑓(0)) 

where 𝑓(∞) = lim
𝑥→∞

𝑓(𝑥) and 𝑓(0) = lim
𝑥→0+

𝑓(𝑥). Q.E.D 

 

3.3  A novel method for evaluating Frullani’s integral 

 

As a consequence of Lemma 3.1.3, a new method for solving certain special 
improper integrals of Frullani type emerged, as we have shown that 

 

    ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥 = ∫ [

1

𝑎
𝑓 (

𝑠

𝑎
) −

1

𝑏
𝑓 (

𝑠

𝑏
)] 𝑑𝑠

∞

0

∞

0
,  (3.6) 

where 

.                                     𝑓(𝑠) = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥.
∞

0
   

 

This time we will be applying equation (3.6) to evaluate some improper integrals 
of frullani-type. 

 

Illustration 3.3.1 Evaluate ∫
𝑒−𝑎𝑥−𝑒−𝑏𝑥

𝑥
𝑑𝑥

∞

0
; 

 

Solution: Let 𝑓(𝑥) = 𝑒−𝑥. Let us note that, 

 

 

𝑓(𝑠) = ∫ (𝑒−𝑥)𝑒−𝑠𝑥𝑑𝑥 = ∫ 𝑒−(1+𝑠)𝑥𝑑𝑥 =
1

1+𝑠

∞

0

∞

0
. 

 

Now, applying Eq. (3.6) we have 
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∫
𝑒−𝑎𝑥 − 𝑒−𝑏𝑥

𝑥
𝑑𝑥

∞

0

= ∫ [
1

𝑎
(

1

1 +
𝑠
𝑎

) −
1

𝑏
(

1

1 +
𝑠
𝑏

)] 𝑑𝑠
∞

0

 

= lim
𝑥→∞

∫ [
1

𝑠 + 𝑎
−

1

𝑠 + 𝑏
] 𝑑𝑠

𝑥

0

 

= lim
𝑥→∞

{(ln(𝑠 + 𝑎)

− ln(𝑠

+ 𝑏)) |
𝑥
 
0

} 

= lim
𝑥→∞

{ln (
𝑠 + 𝑎

𝑠 + 𝑏
) |

𝑥
 
0

} 

=  lim
𝑥→∞

ln (
𝑥 + 𝑎

𝑥 + 𝑏
) − ln (

𝑎

𝑏
). 

 

                              = − ln (
𝑎

𝑏
) 

                      = ln (
𝑏

𝑎
). 

 

Illustration 3.3.2 Evaluate ∫
cos(𝑎𝑥)−cos(𝑏𝑥)

𝑥
𝑑𝑥

∞

0
. 

 

Solution: Let 𝑓(𝑥) = cos 𝑥. let us note that, 

 

 

𝑓(𝑠) = ∫ (cos 𝑥)𝑒−𝑠𝑥𝑑𝑥 =
𝑠

𝑠2+1

∞

0
. 

By applying equation (3.6) again, 

∫
cos(𝑎𝑥) − cos(𝑏𝑥)

𝑥
𝑑𝑥

∞

0

= ∫ [
1

𝑎
(

𝑠
𝑎

(
𝑠
𝑎

)
2

+ 1
) −

1

𝑏
(

𝑠
𝑏

(
𝑠
𝑏

)
2

+ 1
)]

∞

0

𝑑𝑠 

= lim
𝑥→∞

∫ [
𝑠

𝑎2 + 𝑠2
−

𝑠

𝑏2 + 𝑠2
] 𝑑𝑠

∞

0

 

= lim
𝑥→∞

{(
1

2
ln(𝑠2 + 𝑎2) −

1

2
ln(𝑠2 + 𝑏2)) |

𝑥
 
0

} 
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 = lim
𝑥→∞

{
1

2
ln (

𝑥2 + 𝑎2

𝑥2 + 𝑏2
) −

1

2
ln (

𝑎2

𝑏2
)}. 

= −
1

2
ln (

𝑎2

𝑏2
) 

= ln (
𝑏

𝑎
). 

An interesting consequence of the Alternative Proof of Theorem 3.2.1 is that we 
were able to relate the Frullani integral to a class of improper double integrals over 
[0, ∞) × [0, ∞). Specifically, we have shown that 

. ∫
𝑓(𝑎𝑥)−𝑓(𝑏𝑥)

𝑥
𝑑𝑥 = ∫ ∫

𝑒
−

𝑡
𝑎𝑥

−𝑒
−

𝑡
𝑏𝑥

𝑡
𝑓′(𝑥)𝑑𝑥𝑑𝑡

∞

0

∞

0

∞

0
. (3.7) 

The following are illustrative examples aimed to show how this integral equation can 
be used for evaluating certain class of improper double integrals by relating it to the 
Frullani integral (Jung, 2012). 

Illustration 3.3.3 

Show that ∫ ∫
𝑒

−
𝑡
𝑏𝑥

−𝑒
−

𝑡
𝑎𝑥

𝑡
𝑒−𝑥𝑑𝑥𝑑𝑡 = ln (

𝑏

𝑎
)

∞

0

∞

0
. 

Proof: Let 𝑓(𝑥) = 𝑒−𝑥. Then 𝑓′(𝑥) = −𝑒−𝑥. Then by illustration 3.1.1,

∫
𝑒−𝑎𝑥−𝑒−𝑏𝑥

𝑥
𝑑𝑥

∞

0
= ln (

𝑏

𝑎
). 

Thus by equation (3.7), 

∫ ∫
𝑒−

𝑡
𝑏

𝑥 − 𝑒−
𝑡
𝑎

𝑥

𝑡
𝑒−𝑥𝑑𝑥𝑑𝑡 = ln (

𝑏

𝑎
)

∞

0

∞

0

. 

Similarly when 𝑓(𝑥) = 𝑒−𝑥2
, we obtain ∫ ∫

𝑒
−

𝑡
𝑏𝑥

−𝑒
−

𝑡
𝑎𝑥

𝑡
𝑥𝑒−𝑥2

𝑑𝑥𝑑𝑡 =
1

2
ln (

𝑏

𝑎
)

∞

0

∞

0
. 
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4. CONCLUSIONS 

 
This work presented an alternative proof for the Frullani’s integral formula. 

Moreover, the manner or the approach used in proving the Frullani integral formula 
yielded a novel approach for evaluating improper integrals of Frullani type and certain 
improper double integrals. Several illustrations were provided to demonstrate how to 
apply the novel method. 
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